Jack Schick - November		

Multi-Stakeholder Discussion on
Technological Solutions to Illegal Cross
Border Redemption of Deposit Containers

November 5 th
Lansing, Mi

On September 6th, a meeting was held at the Union League Club of Chicago to discuss the problem of illegal cross border redemption of non-deposit containers.

The Attendees:

- · Ashlie Keener, Anheuser-Busch Companies
- Terry Staed, Anheuser-Busch Companies
- · Paul Lucas, Miller Brewing Company
- · Steve Smith, Miller Brewing Company
- Dwayne Kratt, Miller Brewing Company
- · Kevin Morris, Coca-Cola Enterprises
- · Percy Wells, Coca-Cola Enterprises
- · Robert Hunt, Coors
- · Genise Smith-Watkins, PepsiCo

- Bill Lobenherz, Michigan Soft Drink Association
- · Lou Grech-Cumbo, UBCR, Inc.
- · Greg Knoll, TOMRA N.A.
- · Peter Lavoie, TOMRA N.A.
- · Chuck Regal, TOMRA N.A.
- Bob Lincoln, TOMRA N.A.
- · Vemund Ryengen, Tomra Systems ASA
- · Amir Novini, Applied Vision

September 6th, 2007

- At the meeting the group agreed to form a task force of all stakeholders to combat the problem
- The intent was to find technical solutions to the problem
- The meeting was both business and technical in nature, with the focus on the next meeting to be technology offerings

October 4th, 2007

- Several methods of attacking the problem were laid out and discussed. Among them;
 - -Security Marks (Germany)
 - -Add-on / Unique barcode
 - -Can Rim Ink Detection
 - -Lid Incise Detection.

The consensus was to pursue Lid Incise Detection Technology

October 8th, 2007

- A Tomra R&D project was initiated in Norway, under the direction of Andreas Nordhbryn, Chief Scientist
- Internal projects as well as meetings with independent technology companies commenced
- Several Vision companies were contacted, Applied Vision, Pressco, SINTEF, Cognex to name a few.

October 25, 2007

- A meeting was held in Norway to discuss the problem with Don Cochran, Chairman / CEO, and Fredrick (Fritz) Awig, V.P. Customer Support Engineering for PRESSCO, a camera technology company.
- · They did not recommend a vision system.
- A new method was suggested, which could utilize a sensor to detect a special ink used on the filling line to indicate deposit vs. non-deposit containers within the RVM.

<u>Attende</u>	ees:	
	T 1	

Ronald Sivertsen

Vemund Ryengen

Kristian Holmen

Don Cochran

Fredrick (Fritz) Awig.

Peter Lavoie

Andreas Nordhbryn

October 27, 2007

- A meeting was held in Norway with Amir Novini, President/CEO and Joseph Bica, JR. Sr. V.P. of Sales from APPLIED VISION.
- Vision technologies were discussed and some hardware was presented.
- APPLIED VISION demonstrated initial tests done to identify incise marks on can lids, using their proprietary technology.

Attendees:

Marius Loken-

Ronald Sivertsen

Vemund Ryengen

Kristian Holmen

Amir Novini

Joseph, Bica, Jr.

Peter Lavoie

October 30th, 2007

- The Stakeholders gathered again to discuss progress made.
- Both Applied Vision and Pressco made presentations to the Stakeholders explaining their specific technologies to solve the problem.
- Pressco demonstrated their concept with a laboratory mock-up
- Timelines and costs for each project are roughly equivalent, and verified by independent sources.

 The following slides are the presentations from both companies as presented to the stakeholder group:

> PRESSCO TECHNOLOGY INC.

APPLIED VISION

Applied Vision Presentation
трист

Jack Schick - November 5 2007 Lansing MI Meeting(Final) (2).ppt

Applied Vision Recommends Vision Recognition of Incising Insignia as the Basis of Reducing Fraudulent Reverse Vending Activities

Advantages:

- The Insignia is Automatically Hard to Duplicate Built-in "Tamperproof"
- No Additional Cost for Fillers It is Already Done

Disadvantages:

More Challenging to Read on Dirty or Damaged Cans

Cost Estimates

 Phase 1: Applied Vision Will Assume All Expenses to Demonstrate Feasibility and Goodwill

(Estimated cost for phase 1 is ~\$100,000.)

- Phase 2: Time & Material & Expenses
- Phase 3: Time & Material & Expenses
- Phase 4: Time & Material & Expenses
- Phase 5: Time & Material & Expenses

Development Timeline

Phase 1

- Careful Study of the RVM Mechanical Constraints
- Prototype Optical Components to Fit Within RVM
- Experiment with Lighting and Existing Algorithm
- Working Demo (Alpha) Prototype in Akron

> 60 to 90 Days (Calendar)

Phase 2

- Engineer Optical & Processing Integrated Solution
- Engineer Mechanical Mounting and Fit into RVM
- Finalize Algorithm
- Complete Communications Link to RVM from Vision Engine

> 30 to 90 Days

Phase 3

Beta Test in Several Machine Types in Akron & Michigan

Testing of thousands of used cans through modified machines in "controlled" environment at Applied Vision and or Tomra Facilities

> 30 Days Minimum

Phase 4

• Beta Test at Selected Retailers in Michigan

> 90 Days

Phase 5

- · Commercialization & Full Rollout
- ➤ Need Assistance From Tomra to Complete

Totals?

- Approximately One Year for Full Implementation
 - -Accelerate? Assign task forces by Tomra and AVC to expedite!
- Development Cost ~ \$750k to \$1.2m

What Would it the Vision Components Look Like?

The Use of Ultraviolet or Infrared Ink On Top or Bottom of the Can

Advantages:

 Can be Made More Robust, Easier to Detect by Vision or Sensor-Based Technologies, Especially on Damaged/Dirty Cans

Disadvantages:

- Ink Degradation Over Time
- More Costly and Logistically Hard to Implement by the Fillers
- Less Secure Than Lid Recognition Technology

Conclusion

- Applied Vision is Uniquely Qualified For the More Challenging Incising Recognition Task if that Direction is Chosen
- Applied Vision is Qualified and Willing to Consider and Assist with Other Detection Methods Including Tamper-Resist Ink Technologies

Pressco Presentation	

Jack Schick - November 5 2007 Lansing MI Meeting(Final) (2).ppt

23

PRESSCO TECHNOLOGY INC.

Reverse Vending Proposal

Tom Murphy Vice President, Sales

Fritz Awig
Vice President, Customer Support Engineering

November 5, 2007

Reverse Vending Investigation Results

- Numerous variables
 - -Position of the container
 - -Condition of the container
 - -Design of the container
- Available space is limited, especially on newer Reverse Vending Machines
- Requires an inexpensive, simple, "set it and forget it" solution
- Not a good application for typical machine vision solutions

Why Not Machine Vision?

- Reverse Vending machine *environment is not favorable* for machine vision
- Vision-based solution is more expensive
- Vision-based solution requires human interaction
- Vision-based solution requires more physical space

Why Not Machine Vision?

- Too many variables
 - -Tab position can hide printing
 - -Can/end sizes
 - Distance from camera to converted end (i.e., focus, depth of field, etc.)
 - -Grain shine issues
 - Flatness of the converted end (dark/light areas)
 - -Numerous converted end designs
 - -Numerous printing formats
 - -Incomplete printing
 - -Contamination
 - -RVM material handling precision

Proposed Solution (patent pending)

- Leverage existing processes in manufacturing and filling plants
- Utilize date code printed on the bottom of the can at the filler
- Special additive to date code inks to fluoresce when exposed to specific wavelength illumination
- Incorporate a sensor-based solution combined with Pressco's patented CHROMAPULSE™ illumination

Proposed application area

Proposed Solution (patent pending)

- *Minimal changes* to current processes
 - -No change to the printing on converted ends
 - -No change to the converted end manufacturing process
 - -No change to the can manufacturing process
 - -No change to the filling process
 - No change to the date printing process except for using a different ink for cans destined for deposit states

Pressco Solution Advantages

- The system can reliably differentiate between genuine and fraudulent cans
- It is a lower cost solution
- · It is easier to set up and maintain
- · It is not affected by dome shape or grain shine
- It can withstand the environment of the Reverse Vending Machine
- The dome area of the can is well protected

Pressco Solution Advantages

- The cost differential is minimal between existing methods and the proposed method
- No significant changes to existing manufacturing or processes are required
- No additional or modified capital equipment is required at the manufacturer or the filler
- · Fewer manufacturing logistics issues
- Several technology hurdles have already been solved
 - -Printing date code on the dome area of a filled container
- · Actual fraudulent activity is easily detectable

Pressco Solution Advantages

- There are **no health risks** to the consumer
- The typical consumer would be unaware of any differences between recyclable and non-recyclable containers
- Additional novel techniques are available to enhance security

Project Timeline

Proof of Concept Unit: Complete

• Operational Prototype Unit: 4-6 months

Integrate & Test in RVM
 1-2 months

Production Units:
 3-4 months after Prototype

 Next Step: work with ink suppliers to research fluorescent additives

Estimated Pricing

• Development Cost: \$78,000

• Unit Cost: \$2,500 each

Timelines

Security Ink

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Lid Detection

				Moi	nths					
1 2	3	4	5	6	7	8	9	10	11	12
Feasibility t	est			De	velopm	ent			Verifi	cation

Summation:

- Tomra can integrate either technology into it's current HCp line of machines
- Working RVM prototypes can be demonstrated in six to nine months, followed by three months of field evaluation and testing
- Rollout of the chosen solution could commence in about 12 months